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INSTABILITY AND COLLAPSE OF
FLEXIBLY-CONNECTED GABLED FRAMES

G. J. SIMITSESt and S. E. MOHAMED
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A.

Abstract-A nonlinear elasto-plastic instability analysis of flexibly connected and supported gabled
frames with uniform and nonuniform geometry is presented. The analysis incorporates stability and
strength. The procedure is based on nonlinear kinematic relations and linearly elastic material
behavior except at the plastic regions (concentrated plasticity). The nonlinear flexible connections
are represented by polynomial models. Thus, various types of response can be predicted. Through
the chosen examples, the following types of response have been observed: elastic bifurcation
instability, elastic limit point instability, elasto-plastic limit point instability and plastic collapse.
The effect of several parameters is assessed in order to enhance our understanding offrame behavior.
These include the effects of nonuniform geometry, of rotational restraints at the supports, of rise
to span ratio, of beam to column stiffness ratio, of load eccentricity and ofjoint flexible connections.

NOMENCLATURE

Ai
Ai;
A i1
ei

exx

E
F y

Ii
k?
k,
k i•
L
L i

M i

Mpc
M p

Py

Pi
Pi·
qi
Qi
S
I,g,d
V r

cross-sectional area of bar i
coefficient of general solution to equilibrium differential equation of bar i
coefficient of general solution to buckling differential equation of bar i
load eccentricity in bar i
extensional strain
modulus of elasticity
yield stress
second moment of are~ of bar i
P,L?!EIi

k , on primary equilibrium path
PtL?!EIi

column height
length of bar i
bending moment in bar i
plastic moment capacity
full plastic moment capacity
yield stress times member area
axial force in bar i
additional Pi corresponding to V,·, W,·
uniformly distributed load on bar i
concentrated load on bar i
span of the gabled frame
size parameters for the particular connection considered
total potential energy
axial displacement component along bar i
u.lLi

kinematically admissible variation of Vi
shearing force of bar i
in-plane normal displacement component along bar i
w.lLi

kinematically admissible variation of W,
axial coordinate of bar i
plastic modulus
rotational spring stiffness at the support
potential energy of external forces
slenderness ratio of bar i
relative rotation in the connection

I. INTRODUCTION

Considerable research has been devoted to understanding the true behavior of framed
structures. This research has involved finding the elastic critical load (bifurcation or limit
point) (see Oran, 1973; Qashu and Dadeppo, 1983; Simitses and Giri, 1981 ; Simitses and
Kounadis, 1978; Simitses and Mohamed, 1988; Simitses and Vlahinos, 1982) or plastic
collapse load (see Jennings and Majid, 1965; Kassimali, 1968; Kom and Galambos, 1968;
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Fig. I. Geometry and sign convention.

Lui, 1985). The second-order elastic-plastic analysis is considered a very good approach to
predict the true behavior of a practical frame. So, some researchers have employed the
second-order elastic-plastic analysis by using the slope deflection (Kassimali, 1968; Korn
and Galambos, 1968) method, others by using the stiffness method (Lui, 1985). Most of
these works deal with orthogonal frames without considering the possibility of sway
buckling instability or limit point instability before plastic collapse. Moreover, very
few investigators have considered additionally the effect of connection flexibility on the
behavior of the frame (Lui, 1985).

The objective of this paper is to present a nonlinear elastic-plastic analysis of gabled
frames with uniform and nonuniform geometry, and with·or without semirigid connections
or elastic-rotational restraints at the supports. Another objective is to show that both
stability and strength must be incorporated into the analysis in order to fully understand
the behavior of frames.

2. METHOD OF ANALYSIS

The analysis is based on nonlinear kinematic relations and linearly elastic material
behavior except at plastic regions (concentrated plasticity). The material is assumed to
behave as elastic-perfectly plastic, and yielding is considered to be concentrated at member
ends. The influence of axial force on the plastic moment capacity is considered. All the
displacements are assumed to be in the plane of the frame. The cross-section perpendicular
to the longitudinal fibers before deformation is assumed to remain perpendicular to the
deformed longitudinal fibers. The plastic hinge is assumed to become a real hinge.

3. MATERIAL FORMULATION

Consider the gabled frame shown in Fig. 1. Each bar is of length Li , cross-section area
Ai, and of second moment of area Ii' The sign convention associated with the bar in-plane
and normal displacement components, Ui (along the length, Xi) and Wi (normal to the bar)
is shown in Fig. I. The extemalloads, Qi' q;, applied to the frame consist of concentrated
loads and uniformly distributed loads normal to the respective bar. The load eccentricity
ei is positive in the positive direction of the coordinate system. Superscript zero identified
the eccentricity at X = 0 and superscript 1 at X = 1 (see Fig. I).

3.1. Equilibrium equations and related conditions (elastic response)
Through the principle of the stationary value of the total potential, one may derive the

following equilibrium equations and associated end conditions:
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(I)

(2)

for i = I, 2, 3, ... , N.
The expressions for the boundary and auxiliary joint (kinematic continuity and joint

balance of forces and moments) conditions can be deduced from those found in Simitses
and Mohamed (1988) and Simitses and Vlahinos (1982). They are not shown herein for the
sake of brevity.

The displacement components U; and Wi are functions of the coordinate x. One may
express the internal forces and moments (P;, Vi and M;), acting on a cross-section normal
to the undeflected axis of the member as follows:

Pi (x) = EAi[Ui,x+ HWi,x)2]

Mi(x) = Eliw;.xx

Vi(x) = EA;[u;.x + HW;.x)2]Wi,x - Eliwi.xxx'

The following nondimensionalized parameters are introduced for convenience :

x = x/Li iii = q;Ll;Elj k? = -:+ (PiLl)/El V; = u;/Li

q;* = qiL3/El. A.i = L;/Jl;/A; Wi = w;/Li Q; = Q,L2/El.,

Sj = (EliL)/(El1Li) ei = e;/L Pi = PILlEI. Ri = L;/L

Mpc = MpcL/El. }5y = P y L2/El\.

(3)

(4)

Thus, the expressions for the forces and moments in terms of these nondimensionalized
parameters are:

Qi = QiEl,/L2, P; = +k?El;/(L;)2, ql = q,*El.!(L)3

Mi = W"xxEl;/Li, V; = [-:+klw"x- W"xxx]El;/Ll. (5)

The top sign holds for the case for which the ith bar is in compression (Pi is positive in
tension and negative in compression). From eqns (I) and (2) one may express the equilibrium
equations in nondimensionalized form as follows:

(6)

(7)

The solution to the above equilibrium equations is given by:

(for compression)

(8)

(9)
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Regardless of tension or compression in the bar, for each bar there are six constants.
These constants are k" Aij, j = 1,2, ... ,5, i = L 2, ... , N. where N is the number of
members. The response of the N-bar frame is known provided that the 6N constants can
be evaluated. The necessary 6N equations are provided from the boundary and joint
conditions. The coefficients Aij appear in nonlinear manner only in the expression of Uj (1).

Thus, the boundary and joint conditions containing Uj(l) set up the nonlinear equa
tions in A j;. Therefore, balance of forces in the vertical and horizontal directions, balance
ofmoments, continuity in rotations and continuity in displacements [except those containing
Uj (1)] lead to a set oflinearequations in Aij. Because ofthis linearity it is possible to eliminate
all the constants Aij and end up with N nonlinear equations in the nondimensionalized axial
forces k j •

3.2. Modeling ofconnectionflexibi/ity
For the nonlinear connection, the moment-relative rotation behavior is represented

by a polynomial model which is taken from Frye and Morris (1975) as,

(12)

where cI> is the relative rotation, M the bending moment and Cj , i = 1,2, 3 are constants
(for the case of linear flexible connections C2 = C3 = 0 and for the case of rigid connections
C I = C2 = C3 = 0). For a double web angle connection (connection B) the moment-relative
rotation function is given by (Frye and Morris, 1975):

(13)

where

the higher order term (C3) is neglected, k is a dimensionless factor whose value depends on
the size parameters for the particular connected considered and d, t and g are dimensions
of connection geometry. For the end plate column stiffener connection (connection A), the
moment-relative rotation function is given by :

(14)

where k = d- 2.4t -O,b.

The corresponding connection geometries are shown in Fig. 2, which also identifies d,
t and g for the two types of connections.

3.3. Buckling equations and related end conditions
The buckling equations and associated boundary conditions can be obtained by

employing a perturbation method (Simitses, 1976) based on the concept of the existence of
an adjacent equilibrium position (for either a bifurcation or a limit point). The required
steps are as follows: starting with the equilibrium equations and proper boundary conditions
expressed in terms of displacements, perturb them by allowing small admissible changes in
the displacement functions, make use of equilibrium at a point at which an adjacent
equilibrium path is possible, and retain first-order terms in the admissible variations.
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Fig. 2. Connection types and standardization parameters. (a) End plate column stiffeners. (b)
Double web angle.

Let U;(X) and W;(X) denote the displacement functions on the primary path (equi
librium), and let U;*(X) and W;*(X) be their infinitesimally small and kinematically admis
sible variations. Thus, the buckling equations are:

(15)

(16)

The solutions to these equations are:

(for compression)

(17)

W;*(X) = A~ sin k;X+ A~ cos k;X+ A~X+ A;'4

+ki*X(A i2 sin kiX-A;I cos k;X+ii;X!k?)!(2ki), (18)

(for tension)

(19)

W;*(X) =A~ sinh k;X+ A~ cosh k;X+ A~X+ A;'4

+k;*X(Ai2 sinhk;X+An coshkiX+iiiX!kl)!(2k;). (20)
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Note that k, denotes the axial force parameter at the primary equilibrium path at the
instant of buckling, and Ail and Ail are the values of the constants to the solution of the
equilibrium equations [eqns (6) and (7), on the primary path at buckling].

One may express the additional axial force, Pi*(X), bending moment, M,*(x). and
shearing force, Vi*(X). of member i, in terms of k,* and the displacement components
U;/(X). W;(X), U~(X) and W,*(X). Note that the expressions for W,* and U,* are linear
functions of the constants A~i' k!, j = 1, .... 5. Also. V,*. W,* must satisfy the 6N end
conditions and their satisfaction leads to a system of homogeneous. linear. algebraic equa
tions in the constants ki *, At. (i = I, ... , Nand j = 1.2, ... , 5). Thus. a nontrivial solution
exists if the determinant of the coefficients vanishes. This requirement yields one more
nonlinear equation in terms of Au and k i and it holds true only at the critical equilibrium
point (bifurcation or limit point).

4. INELASTIC EFFECT

The material is assumed to be ideally elastic-plastic and yielding is considered to be
concentrated at member ends in the form of plastic hinges (concentrated plasticity). The
members are assumed to remain elastic between plastic hinges. Reversals of plastic hinge
rotations are not taken into account. The influence of axial force on the moment capacity
of the plastic hinge is represented (Kassimali, 1968; Kom and Galambos, 1968) by a
bilinear relationship as

or

IPI
M pc = M p for P

y
~ 0.15

(
IPI) IPI

M pc = 1.18Mp 1- P
y

for P
y

> 0.15,

(21 )

(22)

in which M p is the full plastic moment capacity in absence of axial force, M PC is the reduced
plastic moment capacity in the presence of axial force and

(23)

in which F y = yield stress. If the state of the bending moment at any joint of the frame
equals or exceeds the plastic moment capacity of the member, a plastic hinge will form.
Once a plastic hinge is formed, the member at the hinge can rotate freely and the moment
carried by this plastic hinge is assumed to remain unchanged, i.e. plastic hinges are treated
as real hinges.

Thus, for example, for a member with a plastic hinge at the middle, the slope continuity
(where the plastic hinge is formed) is violated, and the end conditions (equations of
continuity in rotation and balance ofmoments) for the equilibrium equations and buckling
equations, will be replaced by

and

M j*(I) = 0; ~*(I)+Mi*(O)= M;*(O) = 0, respectively

(the member is divided into two members, i and}).
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5. SOLUTION PROCEDURE

A briefdiscription of the solution procedure for finding the critical loads and the failure
mode is presented below.

From the equilibrium equations, eqns (6) and (7), six constants (Aij , ki,j = 1,2, ... ,5,
i = I, 2, ... , N, N is the number of members) are needed to establish the equilibrium
response of each member at each load level. For the gabled frame in Fig. 1,24 unknowns
are needed. Close examination of the boundary and joint conditions reveals that these
conditions yield 5N linear equations in the unknowns Au, for each member:

[C(ki)]{A} = {D(Q,e,ki )} (24)

where [C(k;)] is a 5N x 5N matrix in terms of N k;s, {A} is a column matrix of 5N coefficients
Au and {D(Q, e, ki )} is a column matrix in terms ofloads, load eccentricities and kis. Because
of this linearity, it is possible to eliminate all A ij and end up with N nonlinear equations in
the N axial force parameters, k i •

Then, a good initial estimate for the k;s is needed at some low level of the applied load,
in order to start the execution of the solution. For a set of assumed values of the N ki

formulate the [C] array and then solve for Ajj • The nonlinear equations are checked for
satisfaction by the assumed k j and associated Aij by employing a Quasi-Newton method.
One iterates on the value of ki until the nonlinear equations are satisfied:

(25)

The load then is step-increased and the procedure is repeated. The k; corresponding to
the previous load step are employed now as initial estimates for the present load step. Note
that at each load level, knowledge of Au and ki implies knowledge of the frame response.

As already mentioned in the mathematical formulation section the expressions for the
buckling mode, Wi· and Vi·, are linear functions of Ajj and kj•• Satisfaction of the cor
responding boundary and joint conditions yields a system of 6N, linear, homogeneous,
algebraic equations in Aijand k i•• For a nontrivial solution to exist, the determinant of the
coefficients of A;j, k i• must vanish. This leads to a critical condition.

At each load level one of the following three cases can be obtained;

(1) Bifurcation point load or limit point load where the determinant changes sign.
(2) Yielding (plastic hinge) where the moment in the member reaches plastic moment

capacities (Mpd in the presence of axial load. The plastic hinge is inserted in the
structure and the load level is increased.

(3) Bifurcation point or limit point after one or several number of plastic hinges have
formed.

The analysis is terminated by buckling instability if the bifurcation point load or limit
point load are obtained before the number ofplastic hinges is large enough to lead to plastic
collapse. The analysis is terminated by plastic collapse if the number of plastic hinges is
large enough to develop a plastic mechanism before buckling (limit point or bifurcation).

In the case of realistic flexible connections, the set of nonlinear equations will increase
due to nonlinearity in the connections. Thus, in order (for the sake of simplicity) to use the
same solution method and equations as for the case of rigid connections, the following
concept is introduced.

If the load increments are kept small then the slope to the moment-relative rotation
curve at load step (n+ 1) can be well approximated by the value at load step (n). Then eqn
(12) at load level (n+ 1) is written as

(26)

where C3 is neglected. Clearly then the solution scheme for the case of flexible connections
is the same as the one used for rigid connections. For the case of linear elastic rotational

SAS 26:'Jl~
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Fig. 3. Fundamental and post-buckling equilibrium paths of a gabled frame for concentrated loads
with and without asymmetric eccentricities ()., = 80. Eli = El,).

restraint, the nondimensionalized spring stiffness, fJ = l/C" is changed from 0 to 10 5 (pin
to rigid connection) and the boundary conditions at the supports are given by

M;(O)- W;,x(O)!J = 0; U;(O) = 0; W;(O) = O.

6. NUMERICAL EXAMPLES

(27)

6.1. Nonlinear elastic stability analysis
The first example is that of a gabled frame of rise h, of column length L, of distance

between the supports S and subjected to concentrated ·vertical loads near the three joints
as shown in Fig. 1.

Figure 3 is typical of the elastic response of gabled frame to transverse loads applied
statically near the joints. The results depicted on this figure are for h/L = 0.5, AI = 80,
Eli/Ell = 1, and clamped boundaries. Curves OABD and OAC correspond to zero load
eccentricity, while the dashed curves correspond to e= 0.005 and 0.05, respectively. These
curves are load-deflection curves, where Y3 is the vertical deflection of joint 3. For this
particular geometry sidesway is the mode of buckling at Q= 10.755. As expected, when
there is eccentricity there is no bifurcation, but the response is one that combines bending
and axial deformations. This response asymptotically approaches curve OAC.

Figure 4 employs the same geometry and loading but for various ratios of the beam
bending stiffness to that ofthe columns. Clearly, when the beams are stiffer than the columns
sway-buckling occurs. On the other hand, for El2/El , < 1(0.5), snap-through buckling
occurs. Note that these results are for h/L = 0.5.

From these two examples it can be concluded that using nonlinear elastic stability
analysis, only elastic bifurcation instability or elastic limit point instability can be predicted,
which may not represent the true behavior of framed structures.

6.2. Second-order elastic-plastic analysis
An example of a second-order elastic-plastic analysis for the gabled frame is included

in Fig. 5. The loading and geometry are shown in the figure. The beams in the frame are
analyzed as five elements and the columns are analyzed as one element. A comparison
between the present study and experimental results obtained by Majid (1972) is shown in
the figure, where Qm which appears in the figure, is the predicted experimental value of
collapse load. It can be seen that the numerical solutions in the presence of a small
imperfection (O.OOIQ) are in good agreement with the experimental results.

From this example it can be seen that only plastic collapse is predicted.
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Fig. 4. Effect of stiffness ratio on the critical conditions (;, I = 80).

6.3. Elasto-plastic instability analysis
A first example of elasto-plastic instability analysis is that of a gabled frame, with

concentrated loads at the joints, with yield stress F y = 50 ksi, and slenderness ratio of
)'1 = 100. All cross-sections for the beams and columns are WF 12x45. The beam and
column cross-sections were selected because their sizes were comparable to those used in
the actual testing program reported in Frye and Morris (1975). The results of the analysis
of the gabled frame with rigid connections and double web angle connections (linear and
nonlinear) are shown in Fig. 6. The analysis for the frames with rigid connection and linear
connection was terminated by plastic collapse, while for nonlinear connection the analysis
was terminated by limit point instability after two plastic hinges.

To study the effect of nonuniform geometry on the behavior of gabled frames, the
beams and the columns in the frame are analyzed as three elements and all sections are
chosen to be built-up sections with width b = 8 in., web thickness t". = 0.375 in. and flange
thickness tr = 0.625 in. In order to simplify the problem, constant height along each cross
section is assumed and it varies from 10 in. to 16 in. (the smallest is 10 in., the next one

1.2 Majid (1972)

Present

1.0

O.B

U
0 0.6.....
0

0.4

8.10

Allloods· OIB

0.0010 ~Ihlrt>!L
s

6/(L-t-H)xI02

Fig. 5. Load-deflection curves for a gabled frame (Q" = 0.555 kips, L+h = 22.431 in., A = 0.262
in.', £1 = 160.488 kip. in. " F y = 36 ksi, M p = 1.361 kip. in., S = 48 in., IX = 15°).
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Fig. 6. Effect of the nonlinear flexible connections on the behavior of gabled frame ()., = 100.
Fr = 50 ksi, E = 29000 ksi. all section WFI2 x 45).
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Fig. 7. Geometry and sign convention.
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Fig. 8. Effect of nonuniform geometry on the behavior of gabled frame (E = 29000 ksi, F r = 50
ksi, 2h/S = 0.4, L = 20 ft.).
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Fig. 9. Load~eflection behavior of a gabled frame with nonuniform geometry using linear and

nonlinear connections (A, = 10. h/S = 0.4, Fy = 50 ksi, E = 29000 ksi).
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Fig. 10. Effect of rise of gabled frame with nonuniform geometry on the critical load (E = 29000
ksi, i., = 10, F y = 50 ksi).
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Fig. II. Effect of the nonlinear flexible connections on the behavior ofgabled frame with nonuniform
geometry (A, = 10, Fy = 50 ksi, E = 29000 ksi, 2h/S = 0.4).
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12 in. and the largest 16 in.). The shape factor for all the sections is assumed to be 1.18 and
the yield stress is equal to 50 ksi (see Fig. 7).

Figure 8 shows a comparison between gabled frames with uniform and nonuniform
geometry and with the same weight. The loading and geometry are shown in the figure. It
can be seen that by using nonuniform geometry instead of uniform geometry the critical
load is increased. For both cases failure modes are due to plastic collapse.

To study the effect of support restraints on the critical loads and failure modes. the
analysis is repeated for the gabled frame with rotational restraints (fJ) at the supports and
with i'l = 10. The results are shown. for 2hjS = 0.6, 0.8 and 1.0, in Fig. 9. For all cases
failure is due to plastic collapse.

In order to investigate the effect of rise to span ratio on the critical load and failure
mode. the same gabled frame (as in Fig. 9) is analyzed for different values of rise to span
ratio (21zjS = 0 to I). i.! = 10 and for both fixed and hinged supports. The results are
summarized in Fig. 10. For this case the change of 21zjS does not affect the failure mode
but it affects the critical load. Failure is by plastic collapse.

To investigate the effect of nonlinear flexible connections on the gabled frame with
nonuniform geometry, the example used in Fig. 8 is analyzed for three different types of
connections, rigid, end plate connection with column stiffeners (connection A) and double
web angle connection (connection B). The results for the three types ofconnections, loading
and geometry are shown in Fig. II. The analysis for the frame with connection A was
terminated by plastic collapse, while for connection B the analysis was terminated by limit
point instability after two plastic hinges at the supports. Also, it is observed that the
nonlinearity affects both the critical load and the deformation response.

7. CONCLUDING REMARKS

The salient conclusions in the present study may be summarized as follows:

(I) True behavior of gabled frames can be obtained only by incorporating stability
and strength.

(2) Use of nonlinear flexible connections affects failure modes, critical loads and
deformation response.

(3) Use of linear connections is not acceptable, because it does not approximate well
the true connection.

(4) Nonuniform geometry tends to increase the collapse load.
(5) Limit point instability for gabled frames may occur before plastic collapse.
(6) Critical loads and failure modes are affected by support conditions, slenderness

ratio, rise to span ratio and type of connection.
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